skip to main content


Search for: All records

Creators/Authors contains: "Beck, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. SUMMARY

    The Nazca-South America subduction zone in Ecuador is characterized by a complicated along-strike geometry as the slab transitions from flat slab subduction in the south, with the Peruvian flat slab, to what has been characterized as ‘normal’ dipping subduction beneath central Ecuador. Plate convergence additionally changes south to north as the trench takes on a convex shape. Highly heterogeneous bathymetry at the trench, including the aseismic oceanic Carnegie Ridge (CR), and sparse intermediate-depth seismicity has led many to speculate about the behaviour of the downgoing plate at depth. In this study, we present a finite-frequency teleseismic P-wave tomography model of the northern Andes beneath Ecuador and Colombia from 90 to 1200 km depth. Our model builds on prior tomography models in South America by adding relative traveltime residuals recorded at stations in Ecuador. The complete data set is comprised of 114 096 relative traveltime residuals from 1133 stations across South America, with the added data serving to refine the morphology of the Nazca slab in the mantle beneath the northern Andes. Our tomography model shows a Nazca slab with a fragmented along-strike geometry and the first teleseismic images of several proposed slab tears in this region. At the northern edge of the Peruvian flat slab in southern Ecuador, we image a shallow tear at 95–200 km depth that appears to connect mantle flow from beneath the flat slab to the Ecuadorian Arc. Beneath central Ecuador at the latitudes of the CR, the Nazca slab is continuous into the lower mantle. Beneath southern Colombia, the Malpelo Tear breaks the Nazca slab below ∼200 km depth.

     
    more » « less
  2. Abstract

    Seamounts and ridges are often invoked to explain subduction‐related phenomena such as flat slab generation, but the extent of their involvement remains controversial. An analysis of seismicity in the region of the Pampean flat slab through an application of an automated catalog generation algorithm resulted in 35,924 well constrained local earthquake hypocenters and a total of 12,172 focal mechanisms. Several new features related to the subduction of the Juan Fernandez Ridge (JFR) were discovered, including (a) a series of parallel lineaments of seismicity in the subducted Nazca plate separated by about 50 km and trending about 20°, and (b) a strong spatial correlation between these deeper (>80 km depth) regions of intense seismicity and concentrations of activity in the crust almost directly above it. Focal mechanisms of the deeper events are almost exclusively (∼81%) normal, while those in the crust are predominantly (∼70%) reverse. The deeper lineaments mirror the orientation and spacing of several seamount chains seen on the Nazca plate, suggesting that these patterns are caused by the same types of features at depth. This would imply that relatively minor features persist as slab anomalies long after they are subducted. The correlation of the deeper seismicity that defines these features with seismicity in the mid to lower crust suggests a genetic relation between the two. We postulate that volatiles from the subducted ridges percolate into the South American crust and induce seismicity essentially by fracking it.

     
    more » « less